Teaching with the STEELS Practices Presentation to the Board of School Directors April 22, 2025

STEELS Standards

Science

Life Science focuses on patterns, processes, and relationships of living organisms.

Physical Science focuses on what everything is made of and interactions.

Earth & Space Science focuses on processes that operate on Earth and its place in the solar system and galaxy.

Tech & Engineering

Focuses on the interactions among **technology**, **engineering**, society, the environment, and other disciplines, with a goal of developing individuals that can create, utilize, and assess current and emerging technologies.

Environmental Literacy & Sustainability

Focuses on ecological processes, and systems that comprise the environment, including human social systems and influences. **Sustainability** is the balanced use of natural / renewable resources. **Sustainable practices** seek to ensure the integrity of ecological function and species diversity, with consideration for environmental justice, equity, and economic stability for current / future generations.

Phenomena-Driven Instruction

Science is the practice of developing evidence-based explanations of phenomena in the natural world

"Moving from science as product to science as a practice."

What is Phenomena?

"Natural phenomena are observable events that occur in the universe and that we can use our science knowledge to explain or predict.

The goal of...science is to develop general ideas, based on evidence, that can explain and predict phenomena.

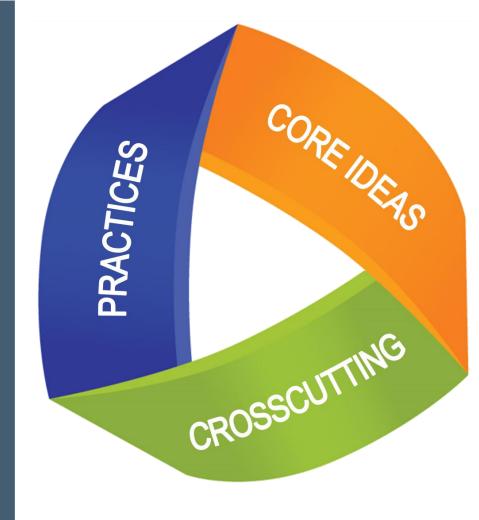
...In this way, phenomena are the context for the work of...the scientist."

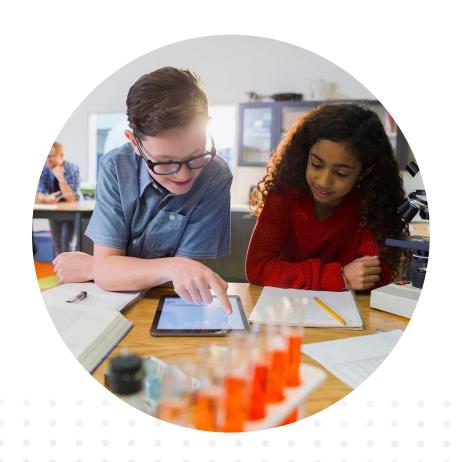
Phenomena-Driven vs Topic Organization

Topic Organization

Coherent to people who already know the topics (e.g. we do genetics before cells so students can better understand the role of DNA in the cell)

Phenomenon Organization



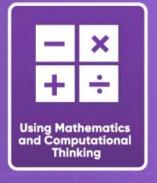

Adds coherence and a "why" for the learning for the students.

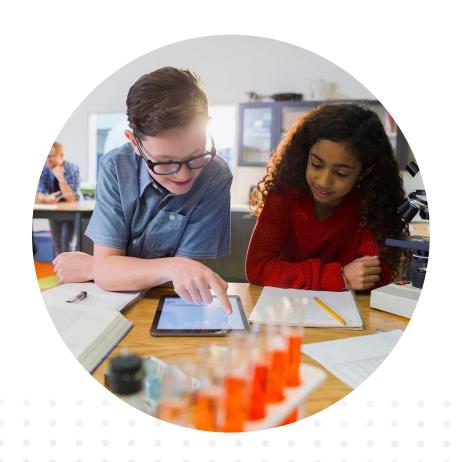
Instructional Shifts in the Classroom

Three
Dimensional
Framework.

Science & Engineering Practices

SEPs are the **behaviors** that students engage in every day, just like scientists, to acquire skills that can be applied in all areas of STEELS.


SCIENCE & ENGINEERING PRACTICES


What Students DO

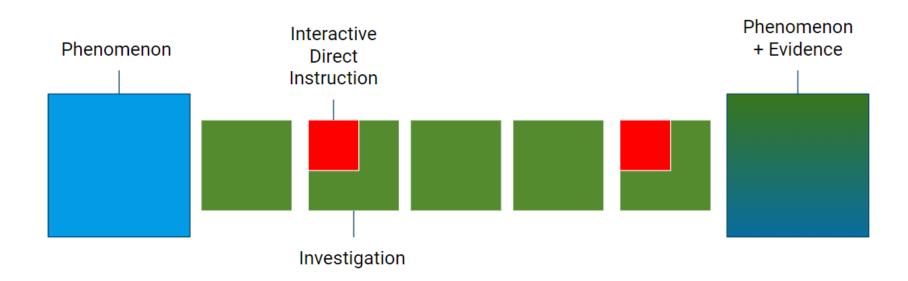
Crosscutting Concepts

themes that appear again and again throughout the scientific disciplines. These concepts are https://doi.org/10.25/ to disciplines. These concepts are how students make sense of the phenomena around them.

How Students THINK

Disciplinary
Core Ideas

DCIs represent content knowledge or big ideas. The topic concepts will stay the same but develop in complexity with each grade level.


What Students KNOW

Implications for Instruction

Old Model of Instruction

New Model of Instruction

Investigation = engage in the SEPs

The Old vs. The New Standards

10

Examine

Legacy Standards STEELS Standards Explain 72 Develop/Use Models 46 Describe 65 **Construct Argument** 22 Identify 42 Conduct Investigation 18 Recognize 24 16 Analyze Data Make/Use Observations **Demonstrate** 16 14 Differentiate 13 Mathematical Representation 11

Practices not practice

A focus on practices (in the plural) avoids the mistaken impression that there is one distinctive approach common to all science—a single "scientific method."

- National Academies of Sciences, Engineering, and Medicine. 2019. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press.

FROM PROFESSIONAL LEARNING TO PUBLICATION

ASHLEY ALVERANGA AND BARBI GRIFFITH

WORKSHOP PARTICIPATION

Engaging Students in Science Investigations – Chemistry with Brett Moulding at MCIU

COLLABORATION

Partnering with Brett Moulding to develop phenomena-based lessons

LESSON DELIVERY

Engaging students in instruction

PUBLISH

- Publication of lesson(s) on Brett Moulding's website: #Going3Dw/GRC
 - Fireworking Our Way to Electron Configuration
 - Let's Glow

HS GRC Lessons- Physical Science

CSSS Guidance Document "Investigation Beyond the Classroom"

Link to GRC Professional Development Brett Moulding - BrettDMoulding@gmail.com

HS Physical Science (PS) Standard	Link to Lesson	Stat e	Lesson Topic	Phenomenon	Lesson GRC or 5E	Notes
HS-PS1-1 Periodic table as a model to predict properties	"Fireworking Our Way to Electron Configuration"	PA	Electron Configuration and Properties of Elements	Phenomenon: The fireworks we saw on the 4th of July were pink and yellow.	GRC PIP	The investigation engages students in doing flame tests and connecting them to electron configuration. Includes formative assessment
HS-PS1-5 Rates of Chemical Reactions	Let's Glow!	PA	Temperature and rate of reaction.	Phenomenon: Glow sticks are brighter on a warm night than on a cold night.	GRC PIP	This investigation uses glow sticks to explore rates of chemical reaction. Includes formative assessment

Source: HS GRC Lessons- Physical Science

STEELS Professional Learning in 2024-25

- K-8 Pilot Teacher Kit Training
- MCIU Professional Learning for Grades 5-12
 - Facilitated by Patrice Semicek and Andrew Kuhn (Montgomery County Intermediate Unit)
 - Key Concepts:
 - Science and Engineering Practices
 - Cross-Cutting Concepts
 - Planetarium Experience (facilitated by Adam Chantry)
 - 3 Dimensional Wrap-Up

Professional Development for STEELS

- Tuesday, May 20th Amplify K-6 and Lab Aids Gr. 7-8
 Kit Training, Grades 9-12 New Resource Training
- Summer MIAC opportunities
- August, October, and February In-Service Days
- Department and Grade Level Meetings
- Google Shared Drives for collaboration

